Các dạng toán về hàm số bậc 2 lớp 10 hay nhất | Myphamthucuc.vn

Cách xác định Hàm số bậc hai

1. Phương pháp giải.

Để xác định hàm số bậc hai ta là như sau

Gọi hàm số cần tìm là y = ax2 + bx + c, a ≠ 0. Căn cứ theo giả thiết bài toán để thiết lập và giải hệ phương trình với ẩn a, b, c từ đó suy ra hàm số cần tìm.

2. Các ví dụ minh họa.

Ví dụ 1. Xác định parabol (P) : y = ax2 + bx + c, a ≠ 0, biết:

a) (P) đi qua A (2; 3) và có đỉnh I (1; 2)

b) c = 2 và (P) đi qua B (3; -4) và có trục đối xứng là x = (-3)/2.

c) Hàm số y = ax2 + bx + c có giá trị nhỏ nhất bằng 3/4 khi x = 1/2 và nhận giá trị bằng 1 khi x = 1.

d) (P) đi qua M (4; 3) cắt Ox tại N (3; 0) và P sao cho ΔINP có diện tích bằng 1 biết hoành độ điểm P nhỏ hơn 3. (I là đỉnh của (P)).

Hướng dẫn:

a) Vì A ∈ (P) nên 3 = 4a + 2b + c

Mặt khác (P) có đỉnh I(1;2) nên:

(-b)/(2a) = 1 ⇔ 2a + b = 0

Lại có I ∈ (P) suy ra a + b + c = 2

Ta có hệ phương trình:

Vậy (P) cần tìm là y = x2 – 2x + 3.

b) Ta có c = 2 và (P) đi qua B(3; -4) nên -4 = 9a + 3b + 2 ⇔ 3a + b = -2

See also  Bài 5. Thường thức phòng tránh một số loại bom, đạn và thiên tai | Myphamthucuc.vn

(P) có trục đối xứng là x = (-3)/2 nên (-b)/(2a) = -3/2 ⇔ b = 3a

Ta có hệ phương trình:

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 2)

Vậy (P) cần tìm là y = (-1)x2/3 – x + 2.

c) Hàm số y = ax+ bx + c có giá trị nhỏ nhất bằng 3/4 khi x = 1/2 nên ta có:

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 3)

Hàm số y = ax2 + bx + c nhận giá trị bằng 1 khi x = 1 nên a + b + c = 1 (2)

Từ (1) và (2) ta có hệ phương trình:

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 4)

Vậy (P) cần tìm là y = x2 – x + 1.

d) Vì (P) đi qua M (4; 3) nên 3 = 16a + 4b + c (1)

Mặt khác (P) cắt Ox tại N (3; 0) suy ra 0 = 9a + 3b + c (2)

Từ (1) và (2) ta có: 7a + b = 3 ⇒ b = 3 – 7a

(P) cắt Ox tại P nên P (t; 0) (t < 3) ⇒ NP = 3 – t

Theo định lý Viét ta có

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 5)

Ta có:

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 6)

Thay (*) vào (**) ta được:

(3 – t)3 = 8(4-t)/3 ⇔ 3t3 – 27t2 + 73t – 49 = 0 ⇔ t = 1

Suy ra a = 1; b = – 4; c = 3.

Vậy (P) cần tìm là y = x2 – 4x + 3.

Xét sự biến thiên và vẽ đồ thị hàm số bậc hai

1. Phương pháp giải

Để vẽ đường parabol y = ax2 + bx + c ta thực hiện các bước như sau:

– Xác định toạ độ đỉnh

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 7)

– Xác định trục đối xứng x = (-b)/(2a) và hướng bề lõm của parabol.

– Xác định một số điểm cụ thể của parabol (chẳng hạn, giao điểm của parabol với các trục toạ độ và các điểm đối xứng với chúng qua trục trục đối xứng).

– Căn cứ vào tính đối xứng, bề lõm và hình dáng parabol để vẽ parabol.

2. Các ví dụ minh họa.

Ví dụ 1: Lập bảng biến thiên và vẽ đồ thị các hàm số sau

a) y = x2 + 3x + 2         

b) y = -x2 + 2√2.x

Hướng dẫn:

a) Ta có

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 8)

Suy ra đồ thị hàm số y = x2 + 3x + 2 có đỉnh là 

See also  Đoàn thuyền đánh cá là một khúc tráng ca về thiên nhiên và con người lao động ngắn gọn nhất | Myphamthucuc.vn
Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 9)

Đỉnh I đi qua các điểm A (-2; 0), B(-1; 0), C(0; 2), D (-3; 2)

Đồ thị hàm số nhận đường thẳng x = (-3)/2 làm trục đối xứng và hướng bề lõm lên trên

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 10)

b) y = -x2 + 2√2.x

Ta có:

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 11)

Suy ra đồ thị hàm số y = -x2 + 2√2.x có đỉnh là I(√2; 2) đi qua các điểm O (0; 0), B (2√2; 0)

Đồ thị hàm số nhận đường thẳng x = √2 làm trục đối xứng và hướng bề lõm xuống dưới.

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 12)

Ví dụ 2: Cho hàm số y = x2 – 6x + 8

a) Lập bảng biến thiên và vẽ đồ thị các hàm số trên

b) Sử dụng đồ thị để biện luận theo tham số m số điểm chung của đường thẳng y = m và đồ thị hàm số trên

c) Sử dụng đồ thị, hãy nêu các khoảng trên đó hàm số chỉ nhận giá trị dương

d) Sử dụng đồ thị, hãy tìm giá trị lớn nhất, nhỏ nhất của hàm số đã cho trên [-1; 5]

Hướng dẫn:

a) y = x2 – 6x + 8

Ta có:

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 13)

Suy ra đồ thị hàm số y = x2 – 6x + 8 có đỉnh là I (3; -1), đi qua các điểm A (2; 0), B(4; 0).

Đồ thị hàm số nhận đường thẳng x = 3 làm trục đối xứng và hướng bề lõm lên trên.

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 14)

b) Đường thẳng y = m song song hoặc trùng với trục hoành do đó dựa vào đồ thị ta có

Với m < -1 đường thẳng y = m và parabol y = x2 – 6x + 8 không cắt nhau.

Với m = -1 đường thẳng y = m và parabol y = x2 – 6x + 8 cắt nhau tại một điểm (tiếp xúc).

Với m > -1 đường thẳng y = m và parabol y = x2 – 6x + 8 cắt nhau tại hai điểm phân biệt.

c) Hàm số nhận giá trị dương ứng với phần đồ thị nằm hoàn toàn trên trục hoành

Do đó hàm số chỉ nhận giá trị dương khi và chỉ khi x ∈ (-∞;2) ∪ (4; +∞).

See also  Soạn Anh 8: Unit 7. SPEAK  | Myphamthucuc.vn

d) Ta có y(-1) = 15; y(5) = 13; y(3) = -1, kết hợp với đồ thị hàm số suy ra

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 15)

Cách vẽ Đồ thị hàm số chứa dấu giá trị tuyệt đối và đồ thị cho bởi nhiều công thức

1. Các ví dụ minh họa.

Ví dụ 1: Vẽ đồ thị của hàm số sau:

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 16)

Hướng dẫn:

Đồ thị hàm số

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 17)

gồm:

+ Đường thẳng y = x – 2 đi qua A(2; 0),B(0; -2) và lấy phần nằm bên phải của đường thẳng x = 2.

+ Parabol y = -x2 + 2x có đỉnh I(1; 2), trục đối xứng x = 1, đi qua các điểm O(0;0),C(2;0) và lấy phần đồ thị nằm bên trái của đường thẳng x = 2.

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 18)

Ví dụ 2: Vẽ đồ thị của hàm số sau: y = |x– x – 2|

Hướng dẫn:

Vẽ parabol (P) của đồ thị hàm số y = x– x – 2 có đỉnh I(1/2; (-5)/4), trục đối xứng x = 1/2, đi qua các điểm A(-1;0),B (2;0),C (0; -2).

Khi đó đồ thị hàm số y = |x2 – x – 2| gồm: phần parabol (P) nằm phía trên trục hoành và phần đối xứng của (P) nằm dưới trục hoành qua trục hoành.

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 19)

Ví dụ 3: Vẽ đồ thị của hàm số sau

a) y = x2 – 3|x| + 2

b) y = |x– 3|x| + 2|

Hướng dẫn:

a) Vẽ đồ thị hàm số (P): y = x2 – 3x + 2 có đỉnh I(3/2; -1/4), trục đối xứng x = 3/2, đi qua các điểm A(1;0),B(2;0),C(0,2). Bề lõm hướng lên trên.

Khi đó đồ thị hàm số y = x2 – 3|x| + 2 là (P1) gồm phần bên phải trục tung của (P) và phần lấy đối xứng của nó qua trục tung.

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 20)

b) Đồ thị hàm số y = |x2 – 3|x| + 2| là (P2) gồm phần phía trên trục hoành của (P1) và phần đối xứng của (P1) nằm phía dưới trục hoành qua trục hoành.

Các dạng toán về hàm số bậc 2 lớp 10 hay nhất (ảnh 21)
Xem thêm bài viết thuộc chuyên mục: Học tập